Keyword Generation for Biomedical Image Retrieval with Recurrent Neural Networks

نویسندگان

  • Obioma Pelka
  • Christoph M. Friedrich
چکیده

This paper presents the modeling approaches performed by the FHDO Biomedical Computer Science Group (BCSG) for the caption prediction task at ImageCLEF 2017. The goal of the caption prediction task is to recreate original image captions by detecting the interplay of present visible elements. A large-scale collection of 164,614 biomedical images, represented as imageID caption pairs, extracted from open access biomedical journal articles (PubMed Central) was distributed for training. The aim of this presented work is the generation of image keywords, which can be substituted as text representation for classifications tasks and image retrieval purposes. Compound figure delimiters were detected and removed as estimated 40% of figures in PubMed Central are compound figures. Text preprocessing such as removal of stopwords, special characters and Porter stemming were applied before training the models. The images are visually represented using a Convolutional Neural Network (CNN) and the Long Short-Term Memory (LSTM) based Recurrent Neural Network (RNN) Show-and-Tell model is adopted for image caption generation. To improve model performance, a second training phase is initiated where parameters are fine-tuned using the pre-trained deep learning networks Inception-v3 and InceptionResNet-v2. Ten runs representing the different model setups were submitted for evaluation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CITlab ARGUS for Keyword Search in Historical Handwritten Documents - Description of CITlab's System for the ImageCLEF 2016 Handwritten Scanned Document Retrieval Task

We describe CITlab’s recognition system for the Handwritten Scanned Document Retrieval Task 2016 attached to the CLEF 2016 hold in the city of Évora in Portugal, 5-8 September 2016 (see [9]). The task is to locate positions that match a given query – consisting of possibly more than one keyword – in a number of historical handwritten documents. The core algorithms of our system are based on mul...

متن کامل

Document Image Retrieval Based on Keyword Spotting Using Relevance Feedback

Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...

متن کامل

Image Backlight Compensation Using Recurrent Functional Neural Fuzzy Networks Based on Modified Differential Evolution

In this study, an image backlight compensation method using adaptive luminance modification is proposed for efficiently obtaining clear images.The proposed method combines the fuzzy C-means clustering method, a recurrent functional neural fuzzy network (RFNFN), and a modified differential evolution.The proposed RFNFN is based on the two backlight factors that can accurately detect the compensat...

متن کامل

A Radon-based Convolutional Neural Network for Medical Image Retrieval

Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...

متن کامل

An Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network

Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017